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Information about the spatial distribution of urban surface emissivity is essential for surface temperature
estimation. The latter is critical in many applications, such as estimation of surface sensible and latent heat
fluxes, energy budget, urban canopy modeling, bio-climatic studies and urban planning. This study proposes a
new method for improving the estimation of urban surface emissivity, which is primarily based on spectral
mixture analysis. The urban surface is assumed to consist of three fundamental land cover components,
namely vegetation, impervious and soil that refer to the urban environment. Due to the complexity of the
urban environment, the impervious component is further divided into two land cover components: high-
albedo and low-albedo impervious. Emissivity values are assigned to each component based on emissivity
distributions derived from the ASTER Spectral Library Version 2.0. The fractional covers are estimated using a
constrained least absolute values algorithm which is robust to outliers, and results are compared against the
ones derived from a conventional constrained least squares algorithm. Following the proposed method, by
combining the fraction of each cover component with a respective emissivity value, an overall emissivity for a
given pixel is estimated. Themethodology is applicable to visible and near infrared satellite imagery, therefore
it could be used to derive emissivity maps from most multispectral satellite sensors. The proposed approach
was applied to ASTER multispectral data for the city of Heraklion, Greece. Emissivity, as well as land surface
temperature maps in the spectral region of 10.25–10.95 μm (ASTER band 13) were derived and evaluated
against ASTER higher level products revealing comparable error estimations. An overall RMSE of 0.014776
(bias=−0.01239) was computed between the estimated emissivity obtained using the proposed
methodology and the ASTER higher level product emissivity (AST05). The respective overall RMSE value
for derived LST was found equal to 0.816935 K (bias=0.67826 K).
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1. Introduction

While cities cover only a small portion of the global land surface,
most of the human population and related activities are concentrated in
theurbanenvironment, resulting in significant transformationof natural
resources (Kennedy et al., 2011; Lambin et al., 2001). During the last
decade, there has been a growing interest in studies concerning surface
temperatures and urban energy budget characteristics. Such knowledge
is significant to a range of topics in earth sciences, including urban
climatology (Arnfield, 2003; Voogt & Oke, 2003), global environmental
change, human–environment interactions, (Weng, 2009; Yang et al.,
2003) and planning and management practices (Chrysoulakis et al.,
2009). The energy budget of the urban surface is mainly defined by its
albedo and Land Surface Temperature (LST), both of which can be
derived from satellite observations (Chrysoulakis, 2003). To retrieve LST
from satellite observations, threemain effects have to be considered and
corrected: angular, emissivity and atmospheric effects. Jiménez-Muñoz
andSobrino (2003) analyzed these effects and found that 1% uncertainty
in emissivity can lead to an error on the LST up to 0.4 K.

Emissivity is a measure of the inherent efficiency of the surface to
convert heat energy into radiant energy. Satellite-based emissivity
estimates depend largely on the composition, roughness and other
physical parameters of the surface, such as its moisture content
(Becker & Li, 1990, 1995). By definition, the channel emissivity εi is
given by Becker and Li (1990):

εi =
∫ fi λð ÞελΒλ LSTð Þdλ
∫ fi λð ÞΒλ LSTð Þdλ

ð1Þ
missivity based on sub-pixel classification of high
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where Bλ LSTð Þ is the Planck's function for black body emission, fi(λ) is
the spectral response of the radiometer in channel i and ελ is the
spectral emissivity. Although in Eq. (1), εi depends on LST, according
to Becker and Li (1990), this variation of εi with LST is negligible
(Δεi=10−4). Therefore, the channel emissivity can be expressed as:

εi =
∫ fi λð Þελdλ
∫ fi λð Þdλ

ð2Þ

The emissivity dependence on the physical condition of the surface
imposes large temporal variations. This leads to a more complex
undertaking of LST retrieval, often prone to largely varying and
inconsistent accuracies. The emissivity of the surface affects the
radiancemeasured from satellite sensors primarily in three significant
ways (Prata, 1993): a) the reduction of emissivity from unity causes a
reduction in the magnitude of the upwelling surface radiance; b) the
nonblack behavior of the surface gives rise to a contribution from the
reflected radiance from the surface; c) the anisotropy of the
reflectivity and emissivity of the surface can substantially modify
the total radiance received at the satellite. Other factors associated
with surface emissivity effects aremixed pixel effects and zenith angle
effects.

The main problem in determining emissivity from Eq. (2) is the
observation of emissivity of natural surfaces at satellite spectral and
spatial resolutions (Coll et al., 1994). The dimension of ground pixels
in a satellite image is such that the characteristics of the surface may
display substantial variation within a pixel. For instance, surface
temperatures can vary by as much as 10 K over a few meters due to
shadowing effects, variation in insolation and topographic effects
(Prata, 1993). This strong horizontal heterogeneity introduces
ambiguity to the definition of an overall emissivity and LST for a
given pixel at a given scale. Furthermore ambiguity rises from
emissivity, LST and their correlation measured at different scales, for
instance, from different satellite sensors, or in-situ derived. This scale
mismatch also makes validation against “ground truth” difficult.

By changing the viewing angle of the radiometer, the radiationmix
from the same components is affected (Prata, 1994). Most natural
surfaces show angular variation of emissivity higher or equal to 0.01,
for viewing angles higher than 30° (Sobrino & Cuenca, 1999). These
differences lead to absolute errors on LST equal to or higher than 0.4 K.
As discussed by Sobrino et al. (1996), estimation of the angular
variation of emissivity is a difficult problem, since there are only very
few in-situ measurements of the angular variation of emissivity over
land. Prata (1994) proposed a parameterization for the angular
variation of emissivity for bare soil. For dry, bare surfaces, emissivity
effects on LST are more important and need to be specified within an
accuracy of ±0.005. For vegetated surfaces, emissivity effects are
minimized by cavity effects and angular effects are only important for
structured vegetation (Sobrino et al., 1990). As explained by Prata
(1994), cavity effects tend to increase the emissivity and reduce the
spectral contrast.

Several methods have been developed to retrieve surface
emissivity (Becker & Li, 1990; Kealy & Gabell, 1990; Snyder et al.,
1998; Sobrino & Raissouni, 2000; Valor & Casseles, 1996; Watson,
1992). Dash et al. (2002) summarized different emissivity estimation
techniques and analyzed their main constraints. Within a particular
surface type, emissivity variation is not well known, but measure-
ments suggest it is small, around ±0.01, except when structural
changes occur as in senescent vegetation. Thus, as explained by Prata
(2002), the greatest concern for deriving LSTs is variation between
(rather than within) surface types. The scheme for accounting for
emissivity variations between surface types relies on a surrogate
measure of surface structure. ASTER higher level emissivity and LST
products are derived using the Temperature Emissivity Separation
method (TES) (Gillespie et al., 1998). TES products have been
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validated and were found to perform within the specification of
±0.015 for emissivity and ±1.5 K for LST (Gillespie et al., 1998).
Jiménez-Muñoz et al. (2006) developed an emissivity retrieval
method for ASTER based on Normalized Vegetation Index (NDVI).
Snyder et al. (1998) proposed a classification-based method to
estimate emissivity from conventional static land cover classes and
dynamic information, and developed an emissivity knowledge-base.
Snyder et al. (1998) derived spectral coefficients from laboratory
measurements of material samples (Salisbury et al., 1994; Salisbury &
D'Aria, 1992, 1994; Snyder et al., 1997) with the use of linear
Bidirectional Reflectance Distribution Function models and structural
parameters from approximate descriptions of the cover type (Snyder
& Wan, 1998). Uncertainties on estimated emissivity, when land-
cover mapping methods are applied, are due to the limited number of
land-cover types and the lack of updates in land-cover maps. LST
errors increase almost linearly, and may reach 6 K in absolute
magnitude for fairly small errors in emissivity (Yu et al., 2008).

Mapping the urban environment in terms of its physical
components preserves the heterogeneity of urban land cover better
than traditional land-use classification (Clapham, 2003; Ji & Jensen,
1999), characterizes urban land cover independent from analyst-
imposed definitions (Jensen, 1983; Ridd, 1995), and captures
accurately changes through time (Ji & Jensen, 1999; Rashed et al.,
2005). The Vegetation-Impervious-Soil (VIS) model (Ridd, 1995)
considers the combination of impervious surfaces, green vegetation,
and exposed soil as the fundamental components of urban ecosystems
if water surfaces are ignored. Lu andWeng (2004) refer to a number of
studies where the VIS model is applied to characterize urban
environments.

In this paper, a new methodology for estimating land surface
emissivity from high resolution satellite imagery is proposed. The
urban land cover is modeled using a variant of VIS model (Ridd, 1995)
and the sub-pixel components of land cover are mapped using
Spectral Mixture Analysis (SMA). Assuming that land surface
emissivity can be expressed as a linear combination of the emissivities
of all components inside a pixel, the spatial distribution of emissivity
can be derived from visible and near infrared satellite observations.

2. Study area and datasets

The study area covers the broader area (approximately 360 km2)
of Heraklion, the larger city in the island of Crete, Greece (Fig. 1).
Heraklion is one of the rapidly growing urban areas in Greece and
exhibits a mixed land-use pattern that includes residential, commer-
cial and industrial surfaces, transportation networks and rural
surfaces. This area is suitable for analysis as it possesses a diversified
urban and rural land cover.

An Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) image (Level 1B) acquired on July 10, 2006
(acquisition time approximately 09:10 UTC) under clear weather
conditions, was used in this study (Fig.1). ASTER imagery contains
four visible and near infrared (VNIR), five shortwave infrared (SWIR)
and five thermal infrared (TIR) bands of spatial resolution
15 m×15 m, 30 m×30 m and 90 m×90 m respectively. ASTER higher
level products (for both land surface temperature and emissivity)
were also available for the respective scene (LPDAAC, 2010).
Therefore, the available surface emissivity and temperature maps
were used to evaluate the performance of the proposed method and
perform accuracy assessment.

A very high resolution orthophotomap derived from Ikonos satellite
image acquired during the same period (Summer 2006) was alsomade
available by Foundation for Research and Technology—Hellas (FORTH).
This orthophotomapwas used as an ancillary dataset for the selection of
endmembers on ASTER multispectral imagery. Finally, MODIS derived
precipitable water product was used to consider the atmospheric
effects,while estimating LST as per Jiménez-Muñoz and Sobrino (2010).
f urban surface emissivity based on sub-pixel classification of high
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Fig. 1. The study area — the broader area of city of Heraklion in Crete Island, Greece.
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3. Methodology

SMA was applied to compute the fraction of each land cover
component in the scene. Emissivity density functions were created for
these components based on the ASTER Spectral Library Version 2.0
(Baldridge et al., 2009). The derived fractions were combined with
emissivity density functions to estimate the spatial distribution of
surface emissivity. All steps followed to derive land surface emissivity
based on SMA are explained below.
3.1. Image pre-processing

A pre-processing of the available images was necessary. The ASTER
image was orthorectified to be combined with higher resolution data
as in Chrysoulakis et al. (2010) and a 15 m posting was obtained.
Digital numbers were converted to radiance values using recalibration
coefficients generated by a modified version of Tonooka et al. (2003);
SMA was performed using radiance values. The separate single bands
of SWIR (5–9) were resampled (using nearest neighbor resampling)
to pixel size of 15 m×15 m to preserve the spatial resolution provided
by the VNIR (1–4) bands. Nearest neighbor resampling is appropriate
since all measurements are from the same sensor. It is considered
essential to preserve as high a spatial resolution as possible, in order
to eventually derive high spatial resolution emissivity maps. Up-
scaling is possible since SMA is employed and information from lower
spatial resolution bands can be exploited in spectral unmixing.
Although atmospheric correction is essential when extracting land
surface parameters from satellite images, in this case atmospheric
correction was not necessary before SMA implementation, because
the endmembers were collected using the same ASTER image.
According to Song et al. (2001), in the case of image endmembers,
atmospheric correction does not affect the results of SMA.

Heraklion is a coastal city, hence water is an important component
of the scene. In this study, sea water is treated separately. Dark pixels
are highly degenerate (i.e. they can be modeled successfully by a large
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shade fraction and a small bright fraction of almost any material),
therefore they cannot be modeled accurately using SMA (Powell et al.,
2007). A water mask, based on shoreline feature extraction (Lipakis et
al., 2008), was applied to the image and pixels corresponding to sea
water were removed from the analysis.

3.2. Linear spectral mixture analysis

Linear Spectral Mixture Analysis (LSMA) (Adams et al., 1995) was
used to analyze the mixed pixels of the urban environment (Lu &
Weng, 2006; Weng et al., 2006). The underlying urban landscapes are
assumed to be composed of a few fundamental components, called
endmembers. LSMA is a physically based image processing method
that assumes the spectrum measured by a sensor to be a linear
combination of the spectra of all components within the pixel. The
spectral reflectance in band i can be described as:

Ri = ∑
n

k=1
fkRik + ERi ð3Þ

where n is the number of endmembers, fk is the fraction of
endmember k within the pixel, Rik is the known spectral reflectance
of endmember k in band i and ERi is the error for band i. The fractions
of one pixel must sum to 1 and all fractions must be greater than or
equal to zero. These conditions can be described by:

∑
n

k=1
fk = 1

fk ≥ 0 for k = 1;…;n:

ð4Þ

The fractional cover of each urban component is estimated using
Eq. (3) constrained by the conditions of expression (4); hence, LSMA
is a constrained linear regression problem. Similar to ordinary
regression analysis where minimization of the sum of squared errors
is the most common method for obtaining the unknown coefficients,
coefficients of LSMA are estimated using a constrained least squares
f urban surface emissivity based on sub-pixel classification of high
:10.1016/j.rse.2011.06.025
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algorithm (see for instance Ramsey & Christensen, 1998). Minimiza-
tion of the sum of least absolute values of errors is a natural alternative
criterion to least squares which is more appropriate when the
distribution of errors is skewed (Dielman, 2009). Furthermore, by
minimizing sums of absolute values rather than sums of squares the
effect of outliers in the coefficient estimates is diminished (Dielman,
2005). Therefore in this work, both constrained least squares (CLS)
and constrained least absolute values (CLAV) algorithms were applied
to derive the land cover fractions in (3). The algorithm described by
Gill et al. (1981) was used for CLS, whereas for CLAV the algorithm
provided in Koenker (2011) was used.

3.3. Endmembers selection

The selection of the endmembers is a critical step in LSMA, as
development of high-quality fraction images depends greatly on the
selection of suitable endmembers. In addition, when fraction images
are used for physical parameters derivation such as emissivity, the
correspondence between endmembers and reference emissivity
values should also be taken into account. A variety of methods are
used to determine endmembers either from spectral libraries or from
field reflectance measurements (Powell et al., 2007), from the image
itself (Boardman et al, 1995; Weng et al., 2009), or even from the
combination of image and reference endmembers (Roberts et al.,
1993; Smith et al., 1990).

In this study, land cover was modeled using a variation of the VIS
model proposed in Ridd (1995). The urban environment was assumed
to be composed of three fundamental components named vegetation,
impervious and soil. The first component mainly refers to green
vegetation. The impervious component in urban environment refers
to manmade surfaces which vary widely in spectral response. Two
main categories of impervious surface components were assumed: a
high-albedo and a low-albedo component (Lu & Weng, 2006). Bright
impervious surface information is included in the high-albedo
component while dark impervious surface information is included
in the low-albedo component.

Following the LSMA approach, each urban land cover component
is assigned an endmember, which represents the respective compo-
nent. Endmembers can be described as extremes in the spectral
multidimensional space of the image (Weng et al., 2006). The Pixel
Purity Index (PPI) (Boardman et al., 1995) was used as a first step to
identify spectrally pure pixels. PPI was not applied directly to the
image, but to its Minimum Noise Fraction (MNF) transform, to
segregate noise in the data (ENVI, 2000). PPI was computed by
repeatedly projecting n-D scatter plots on a random unit vector. The
extreme pixels in each projectionwere recorded and the total number
of times each pixel was marked as extreme was recorded. A PPI value
was set equal to the number of times a pixel was recorded as extreme.
Pixels characterized as pure using the PPI were then classified in four
classes (one for each urban component) using k-means algorithm.
Scatter plots of classified pure pixels were produced and examined to
define a set of possible endmembers.

Pixels regarded as possible endmembers were then visually
inspected using the higher resolution Ikonos orthophotomap as
reference. One endmember was assigned to each urban component
using the following criteria: a pixel should successfully represent an
urban land cover component and it should have a PPI value higher
than a threshold. Since PPI estimation is an iterative process, a
threshold value can be reached when the number of pure pixels does
not change with further iterations.

3.4. Emissivity estimation

The fraction images derived using LSMA were combined with
representative emissivity values for the urban land cover components
derived from spectral libraries, to estimate urban surface emissivity.
Please cite this article as: Mitraka, Z., et al., Improving the estimation o
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Specifically, a unique emissivity value ε for each pixel was obtained
using:

ε = ∑
n

k=1
εk⋅ fk ð5Þ

where εk is the emissivity corresponding to endmember k and fk is the
fraction of endmember k within the pixel.

Information included in the ASTER Spectral Library version 2.0
(Baldridge et al., 2009) was utilized to derive representative
emissivity values for each component. The ASTER Spectral Library
includes spectra of both natural and man-made materials. Specifically
it includes spectra of 4 types of vegetation, 52 types of terrestrial soils
and 56 types of man-made materials. Moreover it provides the
spectral distribution of reflectance ρ, covering all ASTER spectral
bands. Assuming Lambertial conditions in the thermal infrared area,
emissivity εi can be computed using εi=1−ρi, where i is the spectral
channel. The ASTER spectral response function (ERSDAC, 2005) was
used to adjust the spectral library reflectance values. From the five
ASTER TIR bands, LST retrievals are more accurate in the typical
spectral region 10–12 μm, where atmospheric transmission is higher
and emissivity variations are lower compared to other atmospheric
windows, such as the 8–9 μm spectral window (Jiménez-Muñoz and
Sobrino, 2010). For this reason, emissivity was derived for the spectral
window 10.25–10.95 μm (ASTER band 13), although it could be
applied to any ASTER TIR band.

Four types of vegetation are included in the ASTER Spectral
Library: dry and green grass, conifer and deciduous trees. The mean
value of green grass and conifer trees was considered representative
of the vegetation component, according to its definition in this study.
Consequently, an emissivity value of 0.987 (in the spectral window
10.25–10.95 μm) was assigned to the vegetation component. For soil,
as well as man-made materials types, a global emissivity value could
not be assigned. The emissivity values assigned to these components
were site-specific and depended on the soil types found in the area
and the man-made materials used for construction. Fig. 2 shows
emissivity density functions in the spectral window 10.25–10.95 μm
(ASTER band 13) of (a) soil and (b)man-madematerial types found in
the ASTER Spectral Library. Emissivity values for different soil types do
not display substantial variation; however, this is not the case for
man-made material types. The ASTER Spectral Library includes some
samples of man-made material types with very low emissivity values,
such as aluminum, galvanized steel and copper metals or metallic
paint. By selecting the types found in the study area, a representative
emissivity value was assigned to each component.

3.5. Accuracy assessment — comparison with ASTER high level products

Assessing the accuracy of SMA derived fractions was outside the
scope of this paper. Since the CLAV algorithm was employed to solve
LSMA for the first time to the best of our knowledge, the
correspondence between coefficients derived from the two ap-
proaches was examined. The accuracy of the proposed method was
assessed by comparing the estimated emissivity maps (using both CLS
and CLAV) to the ASTER emissivity high level product (AST05)
provided by the TES algorithm (Gillespie et al., 1998). The latter was
considered as the reference dataset. Additionally, the estimated
emissivity maps were compared to an emissivity map produced
using the NDVI-based algorithm (Jiménez-Muñoz et al., 2006). Since
the spatial resolution of the ASTER high level products' is 90 m×90 m,
estimated maps using the proposed method were spatially averaged
from 15 m×15 m to 90 m×90 m. The size of the sample used for
accuracy assessment was approximately 40,000.

Error distributions were examined and several measures were
computed to evaluate the accuracy of the estimations (Hyndman &
Koehler, 2006). The Mean Square Error (MSE), Root Mean Square
f urban surface emissivity based on sub-pixel classification of high
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Fig. 2. Emissivities in 10.25–10.95 μm spectral window (ASTER band 13) of a) soil and
b) man-made materials types included in the ASTER Spectral Library. The dotted and
straight lines represent the mean value and the standard deviation of all samples
respectively. Encircled values correspond to those that were selected as representative
for the study area (‘●’ used for the high-albedo and ‘○’ for low-albedo material types).

5Z. Mitraka et al. / Remote Sensing of Environment xxx (2011) xxx–xxx
Error (RMSE), Bias, Mean Absolute Error (MAE), Median Absolute
Error (MdAE), Mean Absolute Percentage Error (MPE), as well as
Fig. 3. Scatter-plots of the associations between CLS and CLAV derived
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Median Absolute Percentage Error (MdPE) were calculated for all
cases:

MSE = mean Si−Rið Þ2
� �

RMSE =
ffiffiffiffiffiffiffiffiffiffi
MSE

p
Bias = mean Si−Rið Þ
MAE = mean jSi−Ri jð Þ
MdAE = median jSi−Ri jð Þ
MAPE = mean Si−Rij j = Rið Þ
MdAPE = median Si−Rij j= Rið Þ

ð6Þ

where Si are the estimated and Ri the reference values (i=1,…,n the
number of observations). It is worth noting that accuracy measures
based on the median (instead of the mean) are more suitable when
the distribution of errors is non-symmetric (Hyndman & Koehler,
2006). On the other hand percentage errors have the advantage of
being scale independent so they can be used to evaluate performance
across different datasets.

A hypothesis test was performed to examine whether CLAV and
CLS derived emissivity maps follow the same distribution. Specifically,
the (nonparametric) Wilcoxon rank-sum test was applied to assess
whether the two samples of observations have equally large values.
The Wilcoxon test requires independent observations and since
estimated emissivity values are not independent due to spatial
autocorrelation, subsamples were selected in which a distance of 25
pixels was imposed in consecutively sampled pixels. The test was
performed in the selected subsamples which were considered free
from spatial autocorrelation.

In addition, LST maps were produced using the above mentioned
emissivity maps in order to examine the impact of estimated
coefficients: a) vegetation, b) high-albedo c) low-albedo d) soil.

f urban surface emissivity based on sub-pixel classification of high
:10.1016/j.rse.2011.06.025
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emissivity in LST derivation. LST maps were derived using the
approach of Jiménez-Muñoz and Sobrino (2003), adapted to the
ASTER channel 13 (Jiménez-Muñoz & Sobrino, 2010). The MODIS
Precipitable Water product (LAADS, 2010) corresponding to the
respective scene was used in LST estimation to account for the
atmospheric effect. The derived LST maps were also compared to the
ASTER LST high level product (AST08). Error distributions of
estimated vs. reference LSTs were also examined and error measure-
ments (Eq. (6)) were computed for all cases.
4. Results and discussion

4.1. Spectral mixture analysis

The first step for spectral unmixing is the selection of end-
members. After resampling the SWIR (5–9) bands tomatch the spatial
resolution of the VNIR (1–4) bands (pixel size 15 m×15 m), the PPI
was applied and 3.52% of the total number of pixels was recognized as
pure. Pure pixels were then classified into four classes, one for every
urban land cover component; vegetation, high-albedo, low-albedo
and soil classes corresponded in 19,194, 5784, 12,870 and 18,607
pixels respectively. Scatter-plots of the classified pure pixels were
examined and possible endmembers were identified as being
extremes in the scatter-plots. Since PPI estimation is an iterative
process, a threshold value is reached when the number of pure pixel
does not changewith further iterations. The threshold PPI value in this
study was found equal to 1500. Pixels having a PPI value below that
threshold could not be selected as endmembers. After visual
inspection of the pixels regarded as possible endmembers, one pixel
Fig. 4. The land cover fractions estimated using Spectral Mixture Analysis via CLAV: a) veget
the gray variations represent the intervals 0–1. Since sea water is masked out of any comp
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was finally assigned to each of the four land cover components and
was used as an endmember for spectral unmixing.

The fractional covers of urban components in Eqs. (3), (4) were
estimated by CLS and CLAV. Fig. 3 depicts scatter-plots of the
associations between CLS and CLAV derived coefficients. One may
clearly observe a heteroskedastic relationship for coefficients that
correspond to vegetation with decreasing levels of variance as their
magnitude approaches unity. Essentially as the proportion of vegeta-
tion in a pixel increases, the CLAV coefficients tend to approximate the
ones derived from CLS. This phenomenon is not observed in the three
remaining land cover types. It is worth noticing that the association
appears less strong for the soil land cover component compared to the
ones observed for HAI and LAI land cover components.

Fig. 4 shows the fraction images — vegetation, high-albedo, low-
albedo and soil — derived using CLAV coefficients. Pixel values of a
fraction image represent the areal proportions of each endmember
within a pixel. The area that corresponds to sea always appears black
as sea water was excluded from all computations.

In the vegetation fraction image, agricultural areas appear to be
brighter. In fact, Heraklion is a city with very little urban vegetation
and this is clearly depicted in the vegetation fraction image. In the
high-albedo fraction image, commercial, industrial and residential
areas as well as quarries are included. The low-albedo endmember
captured surfaces that appear as dark in visible, like roads, wet soils
and, in some cases, shadows. Although it is difficult to find areas of the
size of the pixel containing pure bare soil in the broader area of
Heraklion, the soil fraction image reveals presence of the soil
component in many pixels of the image. The lower values in soil
fraction images appear in the city of Heraklion, which is in accord to
prior expectations.
ation, b) high-albedo c) low-albedo d) soil. White color corresponds to 1, black to 0 and
utation, it appears black.

f urban surface emissivity based on sub-pixel classification of high
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Fig. 5.Map of estimated emissivity values in the 10.25–10.95 μm spectral window (ASTER band 13) produced for the study area using the proposedmethodology implemented via CLAV.

Table 1
Error measurements for emissivity differences between estimated and reference
values from ASTER emissivity high level product and from NDVI-based emissivity
(Jiménez-Muñoz et al., 2006).

Estimated emissivity vs. ASTER
product

NDVI-based
emissivity vs.
ASTER product

CLAV CLS

MSE 0.000218 0.000222 0.000441
RMSE 0.014777 0.014912 0.021005
Bias −0.012392 −0.012725 −0.018831
MAE 0.013302 0.013693 0.019367
MdAE 0.014600 0.014550 0.021657
MPE 0.013367 0.013760 0.019451
MdPE 0.014688 0.014633 0.021765
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4.2. Emissivity maps

To estimate emissivity following the proposed method, representa-
tive emissivity values are required for the four urban land cover
components. In the case of vegetation, the global emissivity value of
0.987 in the 10.25–10.95 μm spectral window (ASTER band 13) was
used. For soil, as well as man-made materials types, the representative
emissivity values are site-specific. Seven soil types were selected from
the ASTER Spectral Library and were considered representative for the
soil component of the study area: light yellowish brown clay (aridisol),
brown to dark brown sand (entisol), gray/dark brown extremely stoney
coarse sandy (inceptisol), gray silty clay (mollisol), brown to dark brown
clay (vertisol) and alluvial sand (entisol). These soil types have a mean
emissivity value of 0.973 in the10.25–10.95 μmspectralwindow(ASTER
band 13) which was used as representative for the soil component.

Likewise, ten bright construction materials that are present in the
study area were selected for the high-albedo component: one type of
construction tar and two of construction concrete, red smooth-faced
brick, plate window glass, white marble, olive green gloss paint, black
gloss paint, steel metal, and white coating. The mean emissivity value
(equal to 0.944) of those man-made material types in the 10.25–
10.95 μm spectral window (ASTER band 13) was used as represen-
tative for the high-albedo component.

Five dark man-made materials were selected as representative for
the low-albedo component: one type of construction asphalt, one type
of construction concrete, two types of dark roofing materials (copper
metal and black tar paper) and one general construction material
(black paint). Themean emissivity value of these material types in the
10.25–10.95 μm spectral window (ASTER band 13) is 0.979. Inter-
preting the low-albedo fraction image, it is obvious that a low-albedo
component is present in most of the study area. As explained earlier,
this happens because the low-albedo fraction contains crops with
water, wet soil and shaded areas. The mean emissivity of water types
Please cite this article as: Mitraka, Z., et al., Improving the estimation o
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found in ASTER Spectral Library is 0.990. Themean value of dark man-
made material types and water, equal to 0.9845, was considered
representative and assigned to the low-albedo component.

The emissivity map in the 10.25–10.95 μm spectral window
(ASTER band 13), was derived by using the cover fractions estimated
by CLAV and the representative emissivity values and is shown in
Fig. 5. Sea water is masked out of any computations and the respective
area appears in the figure as black. The topography of the area is
clearly outlined in the derived emissivity map. Low emissivity values
appear in the commercial and residential area, whereas even lower
values are estimated for the industrial area in the eastern part of the
city. The two quarries that are included in the study area also appear
with low emissivity values. It is remarkable that, the green areas
around the city's ancient walls, where the majority of the parks are
located, appear to have high emissivity values. In addition, crops and
areas with trees appear also with high emissivity values.

Table 1 presents measures of accuracy computed for estimated
emissivity using both CLAV and CLS vs. the ASTER emissivity high level
f urban surface emissivity based on sub-pixel classification of high
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Fig. 6. Box-plots of error distributions. Box-plots are graphical representations of
population distributions. The line in the center of the box refers to themean value of the
population, while inside the box lie the 50% of the observations. The tips outside the box
include the rest of the observations and whatever lies outside the box tips is considered
an outlier. a) Estimated emissivity (1) and NDVI-based emissivity (2) vs. reference
AST05 emissivity product, b) estimated LST (1) and NDVI-based LST (2) estimated
using Jiménez-Muñoz and Sobrino (2010) vs. LST calculated using AST05 emissivity
product and c) estimated LST (1), NDVI-based LST (2) and LST calculated using AST05
emissivity product (3) vs. AST08 LST product.

Table 2
Error measurements for LST differences between estimated and reference LST values
derived using the algorithm proposed by Jiménez-Muñoz and Sobrino (2010) and
ASTER emissivity high level product (AST05). Errormeasurements for LST derived using
NDVI-based emissivity vs. LST derived using ASTER emissivity high level product are
also presented.

Estimated LST vs. LST using
ASTER emissivity product

LST using NDVI-based
emissivity vs. LST using
ASTER emissivity product

CLAV CLS

MSE 0.667383 0.678905 1.358568
RMSE 0.816935 0.823957 1.165576
Bias 0.678260 0.695849 1.039006
MAE 0.731220 0.752199 1.070245
MdAE 0.800052 0.796981 1.193036
MPE 0.002333 0.002400 0.003416
MdPE 0.002555 0.002545 0.003813

Table 3
Error measurements for LST differences between estimated LST and ASTER LST high
level product (AST08). Error measurements for LST derived using NDVI-based
emissivity vs. ASTER LST high level product are also presented.

Estimated LST vs. ASTER LST
product

LST using NDVI-based
emissivity vs. ASTER
LST product

CLAV CLS

MSE 15.743191 16.337294 19.182518
RMSE 3.967769 4.041941 4.379785
Bias 3.379034 3.516132 3.859289
MAE 3.403850 3.544151 3.879267
MdAE 3.655813 3.732345 4.114125
MPE 0.010983 0.011438 0.012518
MdPE 0.011794 0.012042 0.013278
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product. The same measures computed for NDVI-based emissivity
(Jiménez-Muñoz et al., 2006) are also presented in Table 1 for
comparison. It can be observed that CLAV slightly outperforms CLS
Please cite this article as: Mitraka, Z., et al., Improving the estimation o
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according to all measures. These differences although small, are
statistically significant as the magnitude of the p-value (2.526e-05) of
the Wilcoxon test provided very strong evidence against the null
hypothesis which states that the emissivity distributions are equiv-
alent. An RMSE of 0.14777was observed in estimated emissivity using
CLAV, while the respective value for NDVI-based emissivity is
0.21005. It should be noted that all errormeasurements computations
were performed in 90 m×90 m spatial resolution and the sample size
was approximately 40,000 in all cases. The error distributions of
estimated against reference emissivity values are shown in Fig. 6a) in
the form of box-plot. The error distribution of estimated emissivity is
shown in the first box-plot of Fig. 6a), while the error distribution of
NDVI-based emissivity is shown in the second box-plot of Fig. 6a).
Both the proposed method and the NDVI-based method systemati-
cally underestimate emissivity compared to the ASTER product. 50% of
the estimated emissivity error distribution lies between −0.017421
and −0.011543, while the respective values for the NDVI-based
emissivity error distribution are −0.024644 and −0.017372.

Tables 2 and 3 present the error measurements for the estimated
LST vs. LST estimated using the ASTER emissivity high level product
and ASTER LST high level product respectively. Again, all error
measurements for LST derived using the NDVI-based emissivity are
presented for comparison. The Jiménez-Muñoz and Sobrino (2010)
LST retrieval scheme was used to estimate LST using estimated
emissivity, ASTER emissivity product and NDVI-based emissivity. A
general observation regarding the errormeasurements of Tables 2 and
3 illustrates the relatively high values in Table 3 compared to those
observed in Table 2; this difference is probably due to the LST
estimation algorithm. The relatively low MAPE and MdAPE values
justify this claim. RMSE values presented in Tables 2 and 3 indicated
an improvement in LST estimation of about 0.35 K with the use of the
emissivity derived using the proposed method compared to LST
f urban surface emissivity based on sub-pixel classification of high
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derived using NDVI-based emissivity. Although CLAV does not
dramatically outperform CLS in Tables 2 and 3, one may observe
again that it performs better according to all examined criteria.

The first box-plot of Fig. 6b) depicts the error distribution of
estimated LST against LST derived using the ASTER emissivity product.
The error distribution of LST derived using NDVI-based emissivity
against LST derived using the ASTER emissivity product is shown in
the second box-plot of Fig. 6b). It can be observed that 50% of
estimated LST error distribution lies between 0.619046 and 0.963039,
while the respective values of the error distribution of LST derived
using NDVI-based emissivity are 0.934235 and 1.372766. The above
observation along with the error measurements of Table 2 indicate
that the estimated emissivity contributes to improvement in LST
estimation compared to the NDVI-base emissivity, although more
evidence is required to justify this claim.

Fig. 6c) shows the error distributions of estimated LST (first box-
plot) and NDVI-based LST (second box-plot) against the ASTER LST
high level product. As noted earlier from Table 3, derived LSTs present
a deviation from ASTER LST product. To test if this is due to the LST
retrieval scheme that is used (Jiménez-Muñoz & Sobrino, 2010) the
LST derived using this scheme and ASTER emissivity product was
compared to the ASTER LST product. The third box-plot of Fig. 6c)
shows the error distribution of LST derived using ASTER emissivity
product against the ASTER LST product (RMSE=3.3799). 50% of
estimated LST error lies in [2.438046, 4.823311] while the respective
interval for NDVI-based LST is [2.815277, 5.201280]. This along with
previous remarks is an indication that the proposed method of
emissivity estimation may improve LST estimation.

5. Conclusions

In this paper, a new methodology for deriving land surface
emissivity over urban areas is presented. Surface emissivity over
urban areas is essential for surface temperature estimation that is
related to energy budget and is significant to a range of earth science
related applications along with relevant planning and management
practices.

The proposed methodology is based on spectral mixture analysis.
The urban surface is assumed to be consisted of three fundamental
land cover components, namely vegetation, impervious and soil. Due
to the complexity of the urban environment, the impervious
component is further divided into two impervious land cover
components. The main advantage of the proposed approach is
mixed pixel handling, which is essential when using satellite images
of this spatial resolution to capture biophysical parameters in urban
environment. Therefore, the emissivity dependence on surface type
and its physical conditions are taken into account in sub-pixel level.
Furthermore, the angular variation of emissivity is indirectly taken
into account, since the fraction of each component depends on the
observation angle. The method proposed here can be used for time
series derivation since it is image-based. Moreover unlike other
emissivity estimationmethods that require atmospherically corrected
data, the proposed method can be directly applied, with no need of
atmospheric correction. The methodology is applicable to visible and
near infrared satellite imagery and enables direct derivation of
emissivity maps from most multispectral satellite sensors, which is
considered an advantage over the TES method. Furthermore,
modeling the urban surface using the proposed method enables
consideration of fractional cover of impervious surfaces, in contrast to
the NDVI method. Finally, implementation of SMA via a CLAV
algorithm is considered an advantage over the widely used CLS
method, as the former has been shown to be particularly effective
when the distribution of the response variable is prone to outliers.

The results of the proposed method may be improved if advanced
SMA techniques are used for the derivation of fractional covers like
Multiple Endmember Spectral Mixture Analysis, or Neural Networks.
Please cite this article as: Mitraka, Z., et al., Improving the estimation o
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In addition, a combination of image and reference endmembers may
result in more accurate correspondence between urban land cover
components and reference emissivity values.
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